

Designing with Nature: LID & Stormwater Quality Treatment with Compost BMPs

Outline

- Stormwater: Gray to Green Infrastructure (LID)
- Compost & Stormwater Volume and Quality
- Compost Applications (BMPs)
- Research, Performance, & Design

Q/A

Stormwater Impact

- 850 US cities w/ outdated & under-designed SWM infrastructure
- 75% of Americans live near polluted waters
- 48,800 TMDL listed (impaired) water bodies
- \$44,000,000,000 annual total cost to society

Grey Infrastructure is..\$\$\$\$\$

- ✓ Centralize Collection, Conveyance & Treatment
- ✓ Land Intensive
- ✓ Infrastructure Intensive
- ✓ Pollution Intensive
- ✓ Energy Intensive

Chesapeake Bay Foundation

Land Use = Hydrology = Pollutant Load = Water Impairment

75% of Us Live Near a Polluted Water

- NO DUMPING DRAINS TO BAY
- Coliform bacteria (10,900 streams)
- Metals Cu, Cd, Cr, Ni, Pb, Zn (8600 streams)
- Nutrients N & P (5300 streams)
- Turbidity/TSS Clay & Fine Silt Sediment (5100 streams)
- Petroleum Hydrocarbons Motor Oil, Diesel Fuel,
 Gasoline (polycyclic aromatic hydrocarbons)

Storm Water Pollution Areas

- What
- Parking Lots, Highways/Streets, Rooftops
- Golf Courses, Lawns, Pet Parks
- Who
- NPDES Stormwater Permits:
- MS4s, Industrial, Construction
- CAFOs, CSOs

- √ Trout/Salmon bearing
- ✓ Endangered species
- ✓ Eutrophic water bodies
- √ Beaches/Recreational
- √TMDL designated streams

Low Impact Development (LID) =

hydrology mimics natural site, distributed, decentralized

- Runoff Volume
- Runoff Rate
- Pollutant Loading
- Flooding
- CSOs J
- ✓ Wildlife Habitat/Biodiversity
- ✓ Aesthetics/Land Value 👕

Green Infrastructure = green stormwater management; site preservation/restoration; integrated design & practices; reuse

Low Impact Development (LID) = restore natural site hydrology; decentralize

Compost Tools

Filter Media

Designed for Optimum
 Filtration & Hydraulic-flow

Growing Media

Designed for Optimum
 Water Absorption & Plant
 Growth

Stormwater BMPs

Erosion & Sediment Control

- Perimeter Control
- 2. Inlet Protection
- 3. Ditch Check
- 4. Filter Ring/Concrete washout
- 5. Slope Interruption
- 6. Runoff Diversion
- 7. Vegetated Cover
- 8. Erosion Control Blanket
- 9. Vegetated Sediment Trap
- 10. Pond Riser Pipe Filter

Low Impact Development

- 11. Runoff Control Blanket
- 12. Vegetated Filter Strip
- 13. Engineered Soil
- 14. Channel Liner
- 15. Streambank Stabilization
- 16. Biofiltration System
- 17. Bioretention System
- 18. Green Roof System
- 19. Living Wall
- 20. Green Retaining Wall
- 21. Vegetated Rip Rap
- 22. Level Spreader
- 23. Green Gabion
- 24. Bioswale

Natural Stormwater Management

Runoff + Erosion Control

Designed to: 1) dissipate energy of rain impact; 2) hold, infiltrate & evaporate water; 3) slow down/disperse energy of sheet flow; 4) provide for optimum vegetation growth

LID: Rainfall Absorption

Runoff Volume Reduction

Reduction	Influencing Factors	Reference
49%	Sandy clay loam, 10% slope, 1.5" blanket, 3.2 in/hr – 1 hr rain	Faucette et al, 2005
60%	Sandy clay loam, 10% slope, 1.5" blanket, 4.0 in/hr – 1 hr rain	Faucette et al, 2007
76%	Silty sand, 2:1 slope, 3" blanket, 1.8 in/hr - 2.4 hr rain	Demars et al, 2000
90%	Loamy sand, 3:1 slope, 2" blanket, 4.0 in/hr – 2 hr rain	Persyn et al, 2004

Peak Flow Rate Reduction

Reduction	Influencing Factors	Reference		
36%	Sandy clay loam, 10% slope, 1.5" blanket, 3.2 in/hr – 1 hr rain	Faucette et al, 2005		
42% (30% relative to straw)	Sandy clay loam, 10% slope, 1.5" blanket, 4.0 in/hr – 1 hr rain	Faucette et al, 2007		
79%	Loamy sand, 3:1 slope, 2" blanket, 4.0 in/hr – 2 hr rain	Persyn et al, 2004		

Pollutant Load Reduction:

Compost Blanket vs Conventional Seeding

	Total N	Nitrate N	Total P	Soluble P	Total Sediment
Mukhtar et al, 2004 (seed+fertilizer)	88%	45%	87%	87%	99%
Faucette et al, 2007 (seed+fertilizer)	92%	ND	ND	97%	94%
Faucette et al, 2005 (hydromulch)	58%	98%	83%	83%	80%
Persyn et al 2004 (seed+topsoil)	99%	ND	99%	99%	96%

Peak Flow Rate Reduction

Reduction	Influencing Factors	Reference		
36%	Sandy clay loam, 10% slope, 1.5" blanket, 3.2 in/hr – 1 hr rain	Faucette et al, 2005		
42% (30% relative to straw)	Sandy clay loam, 10% slope, 1.5" blanket, 4.0 in/hr – 1 hr rain	Faucette et al, 2007		
79%	Loamy sand, 3:1 slope, 2" blanket, 4.0 in/hr – 2 hr rain	Persyn et al, 2004		

Runoff Curve Numbers

Watershed Surface	Curve Number*
Parking lot, driveway, roof	98
Commercial district	92
Dirt road	82
Residential lot: ¼ ac, ½ ac, 1 ac	75, 70, 68
Cropland	71-81
Pasture	61-79
Public green space	61-69
Woodland and forests	55-66
Brush >75% cover	48
Vegetated Compost Blanket	55

Reference: USDA SCS, 1986

^{*}Based Hydrologic Soil Group B

Ecosystem Services: Economics of Grey vs Green SWM

- Compost Blanket vs Impervious Surface
- Area = 10 acres
- Design Storm = 3 in/24 hr
- ✓ Stormwater Volume = 54,300 vs 752,100 gallons (1400% increase!)
- Option 1: Containment/Pond:
- Real Estate Value = \$50,000/acre
- SW Pond Design/Construction = \$1/gal
- ✓ Stormwater Pond (4 ft deep) = 0.5 acre
- \$25,000 (lost usable real estate)
- ✓ Stormwater Pond Cost = \$697,800 (design/construction)
 TOTAL = \$722,800

Ecosystem Services: Economics of Grey vs Green SWM

- Compost Blanket vs Impervious Surface
- Area = 10 acres
- Design Storm = 3 in/24 hr
- ✓ Stormwater Volume = 54,300 vs 752,100 gallons (1400% increase!)
- Option 2: Off-Site Discharge (Grid):
- Water Conveyance Cost = \$0.26/gal
- Water Treatment Energy Cost = 2 kWh/1000 gal
- Energy Cost = \$0.13/kWh
- Carbon Emission = 2 lbs CO2/kWh
- ✓ Water Conveyance = \$181,428/yr
- ✓ Energy Cost = \$91/year
- ✓ Carbon Emission = 1,396 lbs/CO2/yr

Compost Tools

Filter Media

Designed for Optimum
 Filtration & Hydraulic-flow

Growing Media

Designed for Optimum
 Water Absorption & Plant
 Growth

Stormwater BMPs

Erosion & Sediment Control

- Perimeter Control
- 2. Inlet Protection
- 3. Ditch Check
- 4. Filter Ring/Concrete washout
- 5. Slope Interruption
- 6. Runoff Diversion
- 7. Vegetated Cover
- 8. Erosion Control Blanket
- 9. Vegetated Sediment Trap
- 10. Pond Riser Pipe Filter

Low Impact Development

- 11. Runoff Control Blanket
- 12. Vegetated Filter Strip
- 13. Engineered Soil
- 14. Channel Liner
- 15. Streambank Stabilization
- 16. Biofiltration System
- 17. Bioretention System
- 18. Green Roof System
- 19. Living Wall
- 20. Green Retaining Wall
- 21. Vegetated Rip Rap
- 22. Level Spreader
- 23. Green Gabion
- 24. Bioswale

Sediment Control/ Stormwater BMPs

- Silt Fence
- Straw Bale
- Mulch Berm
- Fiber Rolls
- Straw Wattles
- Filtration
- Chemical Treatment
- Stormwater Ponds

Natural Stormwater Management

Compost Sock 3-Way Biofiltration

- Physical
 - Traps sediment in matrix of varying pore spaces and sizes
- Chemical
 - Binds and adsorbs pollutants in storm runoff
- Biological
 - Degrades various compounds with bacteria and fungi

Particle Size Specifications

TS Reduction of Sediment Barriers

San Diego State University	Runoff Exposure	Sediment Exposure	Removal
Filter Sock	•260 gal •1.7 g/ft ²	•850 lbs •150 lbs/ft²	77%
	•2.75 ac-in	•125 t/a	
Silt Fence	•260 gal	•850 lbs	72%
	•1.7 g/ft ²	•150 lbs/ft²	
	•2.75 ac-in	●125 t/a	
Straw	●260 gal	●850 lbs	59%
Wattle	•1.7 g/ft ²	•150 lbs/ft²	
- Tractic	•2.75 ac-in	•125 t/a	

filtrexx
sustainable technologies

% TSS Reduction of Sediment Barrier

Sediment Summary

% Reduction of TSS & Turbidity

Treatment	TSS	Turbidity
Silt Fence	67	52
Filter Sock	78	63

^{*} Based on rainfall of 3.0 in/hr for 30 min; runoff sediment concentration (sandy clay loam) of 70,000 mg/L.

Stormwater Pollutant Removal

	TSS	Turbidit y	Total N	NH ₄ -N	NO ₃ - N	Total P	Sol. P	Total coli.	E. coli.	Metals	Oil	Diesel
Filter Sock	80 %	63%	35 %	35%	25 %	60 %	92%	98%	98%	37- 78%	99 %	99%

Stormwater Pollutant Removal w/ Filter Socks

- Britt Faucette¹, Fatima Cardoso^{1&2},
 Eton Codling², Carrie Green², Dan Shelton²,
 Yakov Pachepsky², Gregory McCarty², Andrey Guber²
 - 1. Filtrexx International, Atlanta, GA;
 - 2. USDA-ARS, Beltsville, MD

Compost + Additives

To target specific runoff pollutant

- Fine Sediment
- Nutrients (N & P)
- Bacteria
- Metals
- Petroleum Hydrocarbons

Fine Sediment Removal

Soluble P

Nitrogen Removal

+ Additive

Filter Sock

Bacteria Removal

Bacteria (MPN) Exposure

- Total coliform 200 million/100 mL
- E. coli 170 million/100 mL
- *Typical* 50,000/100 mL

Metals Removal

			METALS (water extractable)					
Treatment	Parameters (mg)	Cd	Cr	Cu	Ni	Pb	Zn	
	Applied	7.915	6.740	7.320	8.070	6.025	6.545	
	Soil Surface	0.004	0.019	6.491	0.144	0.154	2.028	
XX	Total	7.919	6.759	13.811	8.214	6.179	8.573	
º	Transported to Soxx	0.812	0.490	1.640	1.056	0.937	1.669	
<u> </u>	Runoff Water	0.210	0.221	0.383	0.301	0.144	0.621	
Metal	Removal Efficiency*	72	29	70	69	79	57	
+			0.039	0.122	0.029	0.105	0.161	
FS	Removal Efficiency*	77	78	45	63	61	47	
-	Total Runoff	0.224	0.260	0.505	0.330	0.249	0.782	
	Removal Efficiency (%)	73	47	70	69	73	53	
*Relative to Bare Soil w/out Treatment								

*Relative to Bare Soil w/out Treatment

Petroleum Hydrocarbons

- •Runoff Concentrations = 1,400 mg/L (motor oil), 5,400 mg/L (diesel), and 74 mg/L (gasoline)
- •Runoff Loads = 20,820 mg (motor oil), 77,440 mg (diesel), and 1070 mg (gasoline)

City of Chattanooga

Analysis	2-1- 2007 (Pre- retrofit)	6-8- 2007	8-30- 2007	12-13- 2007	3-19- 2008	1-28- 2009	7-28- 2009	% Reduction
COD	1600 mg/L	259 mg/L	255	125	125	405	214 mg/l	75-93
TCC			mg/L	mg/L	mg/L	mg/L	mg/L	
TSS	1370	208	38	18	24	249	177	82-99
8	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
Oil/Grease	107	27	N/A	N/A	5	18	37	65-95
	mg/L	mg/L			mg/L	mg/L	mg/L	

"....an essential tool for engineers, designers, architects, regulators, planners, managers, contractors, consultants, policymakers, builders, and water resource managers." – Forester Press

Contact Me

- Britt Faucette, Ph.D., CPESC, LEED AP
 Director of Research/Technical Services
- Ph: 678 592 7094
 brittf@filtrexx.com
- www.filtrexx.com

