Reducing Nitrates with Permeable Reactive Barriers

Passive Treatment of Nitrate in Groundwater

National Association of Conservation Districts
Webinar
December 20, 2018

110 North Road Brentwood, New Hampshire 603-679-2790

454 Court Street, Suite 304
Portsmouth, New Hampshire 03801
603-766-6670 • www.truslowrc.com
Danna Truslow, PG: danna@truslowrc.com

Major sources of nitrate in groundwater

Why is excess nitrate a problem?

 Causes degradation of water quality and habitat from Eutrophication of surface waters – coastal environments most vulnerable

 Excessive nitrate/nitrite in drinking water can be harmful to health, especially to infants – 10 mg/L/1 mg/L regulatory limit in drinking water

What is a Permeable Reactive Barrier (PRB)

- Subsurface treatment zone <u>below the water table</u> that groundwater passes through under natural flow conditions
- A supplemental carbon source is added in the treatment zone
- Treatment zone slightly more permeable than surrounding areas to promote flow without impacting treatment rate
- Creates nitrate reducing conditions enhances environment for naturally occurring denitrifying (anaerobic) bacteria
- Sustainable infrastructure with no mechanical infrastructure needed but requires monitoring and maintenance
- Proven technology in agricultural areas and being adopted in coastal areas

Wood Chip Bioreactor PRBs

- Trench or zone with a low cost carbon source (wood chips) for denitrification
- Creates environment for naturally occurring anaerobic bacteria to thrive and transform nitrate to nitrogen gas
- Shallow reactive barriers can be simple to install and maintain

Bioreactor wood chips similar to wood chips used for playgrounds

Emulsified Vegetable Oil PRBs

- Emulsified Vegetable Oil (EVO) that is formulated for the treatment setting is injected into treatment zone
- Utilization of EVO in subsurface is monitored and periodically refreshed
- Can be used in areas of deeper/more extensive areas of contamination.

What information is needed for proper design and installation?

- Subsurface geology
- Concentration of nitrate in groundwater
- Potential/actual depth of nitrate impact
- Basic groundwater geochemistry in treatment area
- Direction of groundwater flow from nitrate source
- Depth to groundwater
- Groundwater flow rate
- Annual groundwater level fluctuation

NHDES 319 Grant Project – Great Bay Watershed

- A PRB surrounding a domestic septic system in Durham, New Hampshire
- A PRB surrounding a community septic field in Brentwood, New Hampshire
- Funded by USEPA 319 Grant
- Significant in-kind services provided by Towns of Brentwood and Durham, NH, Conservation Districts, and project consultants
- Two willing landowners participated in the project

PILOT STUDY PROJECT TEAM

PRB Pilot Study NHDES 319 Grant Project – Great Bay Watershed - Project Background

- Project began in 2014
- Purpose to install and pilot two (2) shallow wood chips Permeable Reactive Barriers (PRBs) to reduce nitrate in groundwater and test their effectiveness
- To gather shallow groundwater quality data adjacent to existing septic systems to determine septic system nitrate contribution to groundwater before and after PRB installation
- To implement effective nitrogen removal solutions in the Great Bay Watershed as part of the Great Bay watershed management plan
- Project completed in 2017

Selecting the optimal pilot site

Nitrate contaminated groundwater passes through the PRB and nitrate is converted to nitrogen gas

Pilot Study – Brentwood, NH – Community Septic Field

PRB Installation-Community Septic Field

PRB Placement and Site Restoration

www.TruslowRC.com

Typical PRB Layout – Domestic Septic Field

PRB at Single Residence Septic Field

Monitoring PRB Effectiveness -Where is water tested?

Monitoring network of wells and surface water

Water Chemistry Changes

Regular monitoring under various weather conditions to test effectiveness of PRB

Brentwood – nitrate concentrations in expanded monitoring network – February 2017

Data summary

Measuring Point	Measurement Period	Nitrate-N – Mean (mg/L)	Dissolved Oxygen - Mean (mg/L)	Dissolved Iron – pre-post (mg/L)
Well MW-101 Untreated by PRB	All dates	37.0	5.6	BDL – 0.23
Well MW-102 Untreated by PRB	All dates	31.1	7.3	BDL – 0.35
Well MW-106 In PRB	Post installation	3.1	2.2	NM – 10.0
Well MW-107 5' DG of PRB	Post installation	5.9	2.5	NM – 5.6
Well MW-103 10' DG of PRB	Post Installation	9.3	1.9	BDL - 40.0
Well MW-104 70' DG of PRB	Post Installation	19.4	9.3	BDL – 2.4
Change in NO3-N concentration with PRB treatment	MW-102 – MW-107	31 to 6 ppb	81% reduction	10 mg/L regulatory requirement

DG – downgradient;

PRB – permeable reactive barrier

BDL – below detection limit;

NM - not measured

Optimal settings for PRB use

- Developments near sensitive areas can treat combined septic system/stormwater discharges
- To supplement a traditional septic system that will treat nitrate to WQ standard at property line
- Surrounding a community septic field for protection of sensitive area (water supply, stream, etc..)
- Near a water supply well to remediate or prevent elevated nitrate migration from a source area
- Site where hydrogeologic study already completed or required

Advantages of using wood chip Permeable Reactive Barriers (PRBs)

- Passive treatment of nitrate in groundwater no mechanical systems to maintain
- Wood chips for trench are locally available and low cost
- Wood chips are safe, plant based materials
- Can provide significant nitrate reduction
- Can be sited to treat multiple source areas
- Minor maintenance required once trench installed
- Expected lifetime 20+ years

Examples of successful PRB installations

- Midwest and Canada Agricultural applications woodchip bioreactors
 - https://jbioleng.biomedcentral.com/articles/10.1186/s13036-017-0057-4
 - www.tidescanada.org/.../D-1-9LauraChristiansonD-enitrificationWooD-chipBioreactor...
 - https://engineering.purdue.edu/watersheds/conservationdrainage/bioreactors.html
- Brentwood, NH and Durham, NH Pilot woodchip bioreactor trenches
 - http://www.rockinghamccd.org/presentations/nitrogen-septic-systems-great-bay-and-why-it-matters/
- Orleans, MA Injected Emulsified Oil PRB ongoing pilot study
 - https://www.town.orleans.ma.us/sites/orleansma/files/file/file/owqap_prb_breakout_group_presentation_fi nal_0.pdf

Questions?

Rockingham County Conservation District &

Truslow Resource Consulting LLC providing land & water resource solutions